Archives For El Nino


Reigate May 2016 summary statistics

  • Tmax 27.4C
  • Tmin 0.3C
  • Tav 13.8C (UK 11.3C)
  • total rainfall 42mm (town) 45mm (Hartswood)
  • max gust 36mph
  • average wind direction NNE
  • sunshine 181.7 hours (May 2015 161 hours)

Whilst there were fortunately no severe weather events in Reigate and few across the UK in May, the weather we experienced more widely could be linked tenuously to climate change.  Of course, caution is required with such speculative statements but attribution studies on the May floods in Paris, not so far away, have concluded that they were made 90% more likely due to climate change. The same stalled low pressure system delivered our easterly winds so we were influenced, albeit on the edges, by the same blocked weather pattern.

People attempting to climb Snowdon in North Wales in May were lucky to experience sunnier-than-usual conditions for much of the month (south wales had more thunderstorms which reduced the sunshine totals there).  Meanwhile, in Surrey, we experienced occasionally warm conditions with an unusual mean monthly wind direction from the NNE.


Reigate pressure rose hesitantly mid-month

Pressure fell across the UK to start May but then rose mid-month, especially to the North, bringing a relatively unusual easterly flow into Reigate and the south.  Whilst there were few severe weather events during the month, this post briefly explores some of the wider factors that may have contributed to this Easterly flow and the possibility of it being linked to climate change.


Whilst mostly dry for the UK as a whole, occasional showers, some thundery, brought Reigate rainfall totals to just above average at around 42-45mm as recorded from our two weather stations respectively in and out of town.  SE England as a whole recorded rainfall at 111% of normal rainfall, mostly falling in thundery showers, more common in SE wind regimes.


With relatively dry Easterly winds, sunshine totals for the UK were accordingly above average given the relatively high pressure overall.  Reigate experienced 182 hours of sunshine in total for the month.

Unusually, the sunniest places in the UK were in the North and West given the easterly winds bringing occasionally cloudier conditions off the North Sea to the south and east.  May 24 shows a typical scenario with the higher pressure to the North dragging in E/NE winds across the southern part of the UK with cloud across eastern areas and clearer conditions to the west.

Some great sunny days were recorded in the mountains of Wales, Cumbria and Scotland!


Sunny Snowdonia with kelvin-helmholtz type wave clouds trying to form over Ogwen Valley

The higher than average rainfall patches shown below in the south were associated with showers on occasionally unstable warm and humid SE winds.  Reigate reached a Tmax of over 27C in this warm flow.

The wider pressure pattern across the northern hemisphere was characterized by anomalously high heights over the Arctic and LOWER than normal pressure in mid-latitudes including Europe. This situation is called “northern blocking” and in winter could cause cold conditions in mid-latitudes.  In Spring, as the continent rapidly warms up in stronger sunshine, easterly winds can be warm or even hot for the UK.

northern blocking over Pole

northern blocking over Pole

Northern Hemisphere pressure patterns are measured by the Arctic Oscillation which, as can be seen below, remained unusually negative through much of April and May showing high pressure persisting over the Arctic relative to low pressure in the mid-latitudes.  This pressure pattern turned winds from the usual westerlies into easterlies in the UK and Europe.

negative arctic oscillation Spring 2016

negative arctic oscillation Spring 2016

The causes of this reversal of the usual mid-latitude zonal westerly wind set-up have been linked to low sea ice extent in the Arctic, especially the Kara and Arctic Gateway seas. Warmer influxes of air into the Arctic builds air pressure which then links to higher chances of Easterly winds in mid-latitudes.


low Arctic sea ice cover March 2016

The very low sea ice extent this year was brought about by much warmer-than-usual conditions during the Polar winter, where monthly average temperatures in the Arctic (>60N) were at times 3.5C or more above average during the cold season of 2015-16. This Arctic amplification is widely accepted as being caused by human induced climate change.


It turns out that Spring Arctic sea ice extent is some of the lowest recorded in the 38 year satellite series.


So, unusual sunshine in North Wales, a warm NNE mean wind direction in Reigate and cloudy conditions on the east coast can be linked to the above tele-connecting weather patterns which, in turn, can be linked to climate change in the far flung Arctic.


Meanwhile, the strong 2015-16 El Niño declined rapidly through May and ENSO conditions were neutral by early June. Models suggest the chance of La Niña (cool Pacific) conditions by Autumn 2016 are as high as 60%.  Some forecasters bring La Nina through the summer.  La Nina, and the warmer SSTs of the tropical Atlantic, are associated with more frequent hurricanes in the Atlantic basin.  In turn, high hurricane accumulated energy transfered to the North Pole during such seasons can build Polar heights in Northern Hemisphere winters, warming the Arctic and further melting sea ice.  Whilst this is just outrageous long term amateur speculation, it is nevertheless interesting to ponder the potential for feedbacks to accelerate further climate change in the near future.

The turning down of the vast heat engine of the El Nino might be linked to the slightly lower May global average temperature, though confirmation from expert sources has not verified this as yet.


Local data for May and all months stretching back to 2012 can be found on our data page here


Winter is nigh?

December 29, 2015 — 6 Comments


The synoptic situation above shows the remarkable contrast building up around Europe this week.  While much of the UK still sits in a mild SW flow brought in by a powerful SW jetstream, a HIGH pressure building over Scandinavia is set to drag in Siberian easterly winds to Eastern and SE Europe which is due to get much colder.

Whilst the jetstream is forecast to sink a little south of the UK by early January, which is the colder side, it is not certain whether any proper cold will reach the UK just yet. The UK looks increasingly sandwiched between bitterly cold easterly air and cool Atlantic NW air.  A stormy and wet set-up is likely with temperature contrasts like these, but will it snow?


The ECMWF is certainly keen on something cold as pressure falls across the UK and Europe and allows the chance of LOWS ingesting nearby cold continental air.  This could mean snowy weather for the North, especially on hills, in early January, for example.


However, for the SE Tmins stay above freezing on the chart below for nearby Gatwick, Surrey, and note the absence of snowfall, at least for now.


While the ECM shows the potential for cold UK conditions by early January, the GFS maintains a more broadly westerly Atlantic flow with temperatures falling to average.

Both show a cooler regime and more persistent rainfall for us in the SE. A fall in pressure means LOWS will also make more direct passage across the UK during early January.


The jetstream is shown to move south of the UK over the next few weeks. This will bring colder air across the country and lower pressure.

The terrible flooding in the North and West of England and Wales contrasts with the drier than normal December down here in the SE, running at about 70% of normal rainfall so far this month.  Unfortunately, a significant Atlantic storm, named Frank, is bombing-out right now in the Atlantic and is set to bring gales and more heavy rain to the NW, albeit not due to track directly across the UK.

Storm Frank will stay mostly in the Atlantic and arrive in Iceland on Wednesday night. It is unlikely to impact us much here in the south east other than some blustery and wet weather especially through Wednesday pm/evening as the cold front passes over.

Polar Maritime air behind this front will bring a cooler average feel by Thursday. Further wet and windy weather is likely later in the week and into New Year.  The arrival of this NW/westerly air probably spells an end to the extraordinarily warm long-fetch south westerlies that have made December 2015 by far the warmest on record. Whilst there will be warm sectors passing through the persistent warmth is less likely through January.

The wider atmospheric conditions hold more interesting clues than models as to which way the weather could proceed through January.  A more powerful than usual stratospheric vortex has built around the Pole this December. The extra-powerful vortex has possibly been caused by the excessive heat injected into the global atmosphere by the mega-El Nino: increasing the temperature gradient between mid-latitudes and the Pole and thereby increasing the strength of polar vortex as temperatures in the Polar stratosphere have fallen in the polar night.  Much catastrophic weather has been blamed on the El Nino “bar fire” burning across the Pacific.  Whilst Texas tornadoes and Pacific hurricanes are more likely to be directly linked to ENSO, UK flooding and weather has only tenuous links.  El Nino has now reached a peak but will continue to output through Spring until likely turning neutral and even reaching an opposite cool La Nina state by next winter. (more on El Nino impact on UK weather here )


Mega El Nino December 2015

The powerful stratospheric vortex has “sealed in” cold air into the Pole throughout December (Globe a below).  However, the vortex has been taking a hammering from perturbations from the troposphere known as vertical waves (Globe b). If sufficiently powerful, these waves can lead to sudden warming in the stratosphere which can distort, split or even destroy the vortex, allowing cold Polar air to “escape” into mid-latitudes (Globe c).

Stratospheric experts differ somewhat in their forecasts but, overall, the feeling is that something is afoot high up which could erupt into a full break up of the vortex by Mid-January, something called a sudden stratospheric warming.  This what a SSW looks like in 3D.

A Sudden Stratospheric Warming could then mean, depending on how surface pressure patterns pan out, that some sustained proper cold arrives a few weeks later around late January into February.  This is due to pressure rising over the Poles as a result of warming in the Stratosphere. The increased pressure over the Poles further strengthens the negative Arctic Oscillation giving greater risk of cold outbreaks across mid-latitudes and snowy weather.  Even without a major warming, the super-powerful zonal westerly winds in the stratosphere appear to be abating (chart below: top arrows) due to the perturbation from the troposphere which is forecast to continue.  Whilst lower down the tropospheric jetstream nudges south of our latitude (lower black arrow) as anomalous or neutral winds expand out from 60N (red circles).  This means an increased possibility of cold leaks from the Pole reaching our latitude above 50N.


Unfortunately, at the moment, none of this is catastrophic for the stratospheric vortex because, to date, the waves and warming have been insufficient to knock this King Vortex off his perch.  Nevertheless, El Nino years see a greater chance of SSWs and, as the westerly QBO weakens, it seems odds-on for such a full sudden stratospheric warming event.

Meanwhile, action nearer the surface in the troposphere (up to 10km) has been even more interesting with changes taking place that may render any stratospheric influence less relevant at least in the medium term. Notably, the Arctic and North Atlantic Oscillations are both trending negative.  This means pressure is building in the north relative to the mid-latitudes and could allow more polar air to push out into Europe. A cold outbreak is also possible in the USA.

Until now, December has been dominated by a positive Arctic Oscillation and positive North Atlantic Oscillation, hence the mild conditions.  A change to negative AO and NAO is therefore a significant indicator of cooler weather ahead.


warming Pole negative AO

The chart above shows mean anomaly 2m temperatures for the 5 days 08-13 Jan 2016.  Note the extraordinary warmth over the Pole which helps to build pressure.  Note also the cold pool in the Atlantic, associated with cooler sea surface temperatures residing there.  This will be significant because NW polar maritime winds will be cooler than usual and could bring more snow to the NW and especially upland UK, even if we fail to get any truly bitter easterlies. Spot the cold lurking in the N/east of Europe and Russia waiting to pounce should we get a LOW sliding east through the Channel, for example!  Finally, the MJO is an important influence on winter outcomes worth exploring.


The MJO or MOJO or Madden Julien Oscillation is a measure of convective activity which starts in the Indian Ocean and migrates east as a series of thunderstorms across to the Pacific and thence around the planet in a 30-60 day cycle. Here is a video about how the MJO impacts Australia, but it also impacts weather elsewhere.

The intensity and state of the MJO connects with global weather and correlates to known pressure patterns in the northern hemisphere. We have just left MJO Phase 5.  The expected mean pressure pattern associated with MJO Phase 5 (in ENSO positive phase) correlated pretty well with the pattern that turned out.  See charts below.

The MJO is now going through a nicely organised phase. This could mean that the correlation with real weather patterns continues into the weeks ahead.  Here below is the expected 500mb pressure pattern for Phase 6, which we are just entering and then Phase 7 and 8 which are due in early January.  Note the strong westerlies of Phase 6, which certainly equates with the current state of affairs, as does the building Scandinavian HIGH. This is not a cool phase for the UK.

Phase 7 sees a HIGH pressure building out from Scandinavia as a possible northern block.  This equates with the emerging negative NAO and potential easterly / Arctic winds winding round the base of the HIGH.  It is an increasingly cool phase for Europe, so matches expectations as we move into early January.  Phase 8 is a high pressure phase in Europe as the LOW moves further into the Mid-Atlantic.  High pressure can be cool dry frosty at the surface depending on the exact location of the high pressure.  This is expected by 13 Jan.


Finally, Phase 1 and 2 (above) are both cool phases as they build Atlantic / Greenland blocks to the NW and place a trough over the UK dragging in potentially cold NE or NW. These MJO phases could weaken according to MJO forecasts but the signal is due later Jan/early Feb.  The MJO is just one teleconnection in winter weather forecasting it will be one to watch in the coming weeks and most interesting to see how it verifies with prevailing conditions.  Below are some links to explore the MJO yourself.

This is a round-up of the atmospheric situation and not a forecast. In summary, however:

  • models are struggling with all the action, ecm might be preferred as gfs does not take account of much vertical extent into the stratosphere, while ecm does. ecm is showing colder runs generally.
  • stratospheric vortex is taking a hammering and a SSW is predicted for January (AER)
  • QBO westerly regime is weakening somewhat, allowing more potential for cold.
  • MJO entering cool phases upcoming in January (esp Phase 7,1 and 2)
  • AO and NAO going negative which indicate blocking in North.
  • latest ensembles show high latitude blocking across Scandinavia to Greenland.

All the above give more likelihood of colder weather for the Northern Hemisphere, albeit not necessarily for the south of England!


El Nino: massive Pacific heat engine

El Niño has no obvious or strong effect on UK winter weather.  Historically, El Niño years have coincided with both mild/wet and cold/dry winters in the UK.  By itself, El Niño does not directly drive our winters in any single, simple direction. For example, El Niño winter 2009/10 was the coldest winter for 30 years with a notable “Big Freeze”, while the El Niño winter 2006/2007 was the second warmest winter on record.  The strongest recent “Mega” El Niño in 1997-98 turned out to be a stormy and mild December in the UK, with just two minor snow events and then a notably mild January and February, with Tmax even reaching 17C on occasions.  However, despite weak and ambiguous El Niño signals for UK winters, when other weather drivers and teleconnections are combined with El Niño there is some research to suggest that stronger impacts such as stormy early winters and cold dry late winters are possible. The current El Niño could turn out to be one of the most powerful in 50 years (though recent measurements still show it 3rd in the league table of Mega-El Niños).  Of course, wintry weather can also occur completely independently of any El Niño event, such as the snow of January 2013.

“In Britain, the impact of El Niño is nowhere near as marked as in other parts of the world. But it does tip the balance a little bit more in favour of wet and windy weather. It makes it more probable,”

Jeff Knight, a climate modeller at the Met Office’s Hadley Centre, Exeter.

Read on for more details on how this fascinating and topical weather story might or might not impact our winter weather!


Some drivers, teleconnections and indicators of UK winter weather


Winter 2015-16 most powerful El Nino in 50 years?

El Niño: What is it?

El Niño is a natural change in the atmospheric pressure and wind patterns and flow of ocean currents in the Equatorial Pacific.  In normal “non-El Niño” conditions, a 200 metre deep pool of the world’s warmest sea surface water builds up in the West Pacific.


Average Pacific Ocean sea surface temperatures non-El Nino conditions

This is known as the West Pacific Warm Pool and it is formed by intense insolation, a piling up of warm water driven by the easterly trade winds and low evaporation in light winds found round Indonesia.  Moist warm air over the West Pacific Warm Pool creates an area of instability and convergence in low pressure systems where air rises forming deep tropical clouds, heavy rain and thunderstorms and sometimes typhoons.  A contrasting cold pool exists in the East Pacific where upwelling of deep ocean water reaches the surface off the coast of Peru courtesy of the cold Humboldt current bringing Antarctic water up from the ocean depths . Cool dry air subsiding over the cold pool in the East Pacific condenses moist air and forms low cloud and fog that acts as a feedback loop by reducing insolation and creating cooler conditions. Normally, brisk Easterly Trade Winds drive this cool tongue of ocean water west and, on it’s journey along the Equator, the sea surface warms up.  This normal Pacific pattern is known as the “Walker Circulation”.

Normal Pacific Walker Circulation

Normal Pacific Walker Circulation (RGSweather diagram)

Strong El Niño episodes result in a reversal of the normal pattern of Pacific Ocean wind and ocean currents and dramatically changes the sea surface temperatures across the Pacific.


Pacific Ocean sea surface temperatures during warm El Nino phase

The reversal of winds and currents causes the West Pacific Warm Pool to move to the Central and East Pacific where there is normally cold ocean water, hence El Niño are known as “warm phases”.  Strong El Niño phases produce a tongue of above average sea surface temperatures extending 13,000 km long and 1000 km wide across the Equatorial Pacific and this has a major impact on weather patterns across parts of the world, especially during the Northern Hemisphere winter when El Niño usually reaches a peak of intensity.

El Nino phase Pacific Ocean

El Nino phase Pacific Ocean (RGSweather diagram)

During El Niño episodes the Pacific trade winds weaken, the subtropical jetstream can reverse and strengthen and wind driven upwelling slackens.  As a result the Equatorial ocean current reverses as warm water starts moving to the east. Whilst it is not known what causes an El Niño, a key change is in the pressure pattern across the Pacific basin.


Tahiti sea level pressure correlates negatively with Darwin i.e. when one is high, the other is low. ENSO warm phase yields HIGH pressure over Darwin.

ENSO: El Niño Southern Oscillation or Pacific Pressure See-Saw

In El Niño phases the normally LOW pressure measured over Darwin, Australia changes to higher pressure and the reverse goes for pressure over the east Pacific, measured in Tahiti, where pressure falls.  The changing fortunes of these pressure cells is known as the Southern Oscillation.  The reversal of pressure gradient weakens or reverses the trade winds and allows the West Pacific warm pool to “slosh” east across the Pacific towards South America.  The resulting thermal expansion and the reversal of ocean currents, actually raises the sea level in the East Pacific.  This all takes months and the coupling of the ocean currents and atmospheric winds is critical in creating a complete El Niño Southern Oscillation (ENSO). This video explains the phenomenon well:

So during an El Niño event, the easterly trade winds converging across the equatorial Pacific weaken.  This in turn slows the ocean current that draws surface water away from the western coast of South America and reduces the upwelling of cold, nutrient–rich water from the deeper ocean, flattening out the thermocline (boundary between deep cold water and surface warm water) and allowing warm surface water to build in the eastern part of the Pacific.  Once the ocean currents and atmospheric winds “couple-up” then a positive feedback loop is established which causes further sea surface warming in the East Pacific.  Here the air is warmed above, becomes more buoyant and rises, lowering pressure so further drawing in more westerly winds.  These changes transport enormous amounts of heat and energy to the East Pacific which alters the subtropical jetstream which transfers changes in the atmosphere further “downstream” to other parts of the world.

El Nino

El Nino sea surface temperature anomalies October 2015


El Nino sea surface temperature anomalies November 5th 2015 (courtesy xmetman wordpress)

Significant global Impacts

Due to the release of immense amounts of heat from the Pacific Ocean, El Niño years often become record-breakers for global average temperature.  The energy and moisture released flows “downstream” into the global circulation and has significant impacts on weather elsewhere.  El Niño reaches a peak around Christmas, hence the name “Christ Child” bestowed on the phenomenon by Peruvian fishermen who suffer from the collapse of their fisheries during warm episodes as the upwelling of nutrient rich bottom waters are capped by the invasion of the nutrient poor warm pool.  This causes a temporary collapse in sea life in the East Pacific.  El Niño occur periodically but irregularly over a cycle of 3 to 7 years, they differ in strength and are sometimes followed by a corresponding reversal to a strengthened “normal” flow called La Nina. The last mega-El Niño was 1997-1998 and our 2015-2016 El Niño looks like matching that strength or possibly exceeding it (update November: not so likely now* see Xmetman blog post in refs at foot of page)

The effects of El Niño around the Pacific and neighbouring continents are the most obvious and well correlated with the event, for example wetter and stormier conditions in South America, drier drought conditions with more wildfires in Indonesia and Australia and NE Brazil and a weaker SE Asian monsoon and wet winters in SE USA.  El Niño years also correlate with 44% fewer Atlantic hurricanes due to the enhanced subtropical jetstream shearing the heads off developing thunderstorms and enhanced Pacific hurricanes due to warmer SSTs e.g. Patricia October 2015.  Some of these effects have already occurred in the 2015 El Niño with hurricane activity correlating well with expected changes and an Indian heatwave with reduced monsoon.

The chart below shows a composite of analogue surface temperature anomalies for October in El Niño years (source JMA) compared to the actual conditions measured for mid-October 2015.  The patterns match surprisingly well, especially for the more significant and more strongly correlated locations.  This hints at how patterns for this El Niño might expect to map out as expected. Note the lack of any significant impact in NW Europe.


Around the Pacific, very roughly, places that are normally wet and stormy become drier and more settled but can also suffer drought and fires e.g. Indonesia and Australia, while those places which are normally dry become stormy and wet and suffer from flash floods and landslides e.g. Peru and California. The most extreme weather impacts occur during the cold winter season of each El Niño in the Pacific but the knock-on effects can last into the following summer and link with places over great distances. The charts below show some of the recognised El Niño impacts. Note the complete absence of any reliable or linear teleconnections in Europe recognised by NOAA.


Impacts of El Nino

Weak UK and European Impacts…

Impacts on the weather further away from the Pacific mostly consist of weaker signals that are often reversible due to other stronger weather drivers.  The impact of El Niños on European weather, especially the UK, fits into this category because there are no strong, reliable impacts based solely on El Niño episodes on UK weather.

“There is really no effect in the U.K. that we can say is definitely caused by El Niño” AccuWeather Meteorologist Tyler Ros states.

Other drivers of weather become more significant because the UK is located further downstream and along way from action in the Pacific.  Research by Judah Cohen, Atmospheric and Environmental Research (AER), suggests El Niño warm years overall bring warmer winters to the Northern Hemisphere. However, other research has picked up on some weak “teleconnections” between El Niño events and colder European winters. Some of the connections are illustrated below:


El Nino connections to European winter weather (diagram RGSweather)

…But some possible El Niño signals for UK and Europe?

In Europe, research shows that any El Niño signals are “strongest” in middle and late winter and they approximate to a negative North Atlantic Oscillation.  A negative NAO corresponds with higher pressure over Iceland and a weaker meridional (wiggly) jetstream.  This situation can lead to cold outbreaks for the UK as a sinuous jet can provide chances for Arctic air to leak out of the Poles. In addition, El Niño is associated with low temperatures and decreased precipitation over NE Europe, connected with higher than normal pressure here. This provides the UK with the risk of cold North Easterly winds coming from Russia… so called “Beast from the East”. Some modest El Niño signals emerging from research for European winter weather are listed below but it is important to point out that these are weak signals and other research finds no reliable El Niño winter signals at all!

  • Atlantic storm tracks shifted south taking storms over Mediterranean
  • More cyclonic weather patterns over Central Europe
  • Pressure over Scandinavia HIGH; or western Russia anticyclone expanded over Europe: this would increase the chances of cold Easterly winds
  • High sea level pressure over Iceland across to Scandinavia and NE Europe
  • NE Baltic cold impact: but not in very strong El Nino events when warm impact may occur (UK MetOffice)
  • LOW sea level pressure across central Europe and Western Europe: higher precipitation
  • Some El Ninos have cold winters in NE Europe and enhanced precipitation in Central Western Europe
  • Positive NAO in Nov-Dec : this would mean a stronger jetstream with milder conditions for much of Europe, especially NW
  • Negative NAO late winter into Spring: this would mean a weaker more meridional jetstream with the possibility of blocked patterns and potential Arctic outbreaks or easterlies (other things coming into play)
  • High rainfall in the Mediterranean and decreased precipitation over NW Europe and Scandinavia
  • Frequency of upper troughs over central Europe was very high
  • Temperatures and precipitation over Turkey are high.
  • Israel high rainfall

There are mixed messages regarding the El Niño signal for European weather. Overall, the signal is most consistent in late winter and resembles the negative phase of the North Atlantic Oscillation which itself links to higher chances of cold winter episodes with northern blocking.  The prolonged 1940–1942 El Niño was accompanied in northeastern Europe by three of the coldest winters of the 20th century. In early winter the signal is almost the opposite with a positive NAO, stronger jetstream which brings milder stormier conditions to Europe.  Variability between El Niño impacts on Europe is also large and range much larger than the impacts themselves. Some research shows such variability might be due to volcanic eruptions in the tropics prior to El Niño events.  There is some evidence that pronounced El Niño impacts on European weather follows major volcanic eruptions e.g. El Chichon 1982, Pinatubo 1991.


Calbuco Volcano erupted April 2015 but is this eruption big enough to trigger stronger El Nino teleconnections this winter?

Links between El Niño  and other atmospheric drivers

In the 20th Century all three of the strong El Niño events followed major volcanic eruptions. Even so, the signals were not consistent between these events.  Some studies also show a connection of El Niño events to stratospheric conditions. Warming of the stratosphere (sudden stratospheric warming) and subsequent weakening of the Polar Vortex have been linked to increased chances of cold winter weather in Europe (due to a weakening of upper westerly zonal winds propagating down into the Troposphere, allowing cold easterlies to break out into Europe).  Some research finds an increased frequency of such stratospheric events, especially in late winter, during El Niño years. Additionally, volcanic eruptions might also play a role in warming the lower stratosphere and encourage SSW (sudden stratospheric warming) events but further research is needed to establish any firm connection.

In addition to volcanic activity and stratospheric behaviour, other drivers and atmospheric behaviours can have significant influences on UK winters and these might enhance or reduce any El Niño signal or overwhelm it completely. Examples of some drivers / indicators and teleconnections that seasonal forecasters use include:

  • Solar activity: low sunspot numbers connect to northern blocking.  Currently low.
  • Atlantic hurricane activity: more hurricane activity injects heat to the Poles that increases the chance of northern blocking and cold winters. 2015 season very low hurricane activity.
  • October Siberian snow cover: high and rapid expansion of Eurasian snow cover in October links to increased chance of sudden stratospheric warming later in the winter which can cause cold late winters. Current Siberian snow cover is more than more recent recorded years.
  • October weather patterns: recent research shows that an anticyclonic October in the UK (dry) can link to cold winters with LOW pressure in Europe and northern blocking at high latitudes. This enhances a negative NAO.
  • Quasi-Biennial-Oscillation: westerly upper tropical wind pattern surpresses chances of cold outbreaks in mid latitudes. Currently westerly QBO.
  • Atlantic sea surface temperatures: tripole of warm/cold/warm pattern hints at potential for -ve north atlantic oscillation in winter.  Currently no tripole but cold pool anomaly in central North Atlantic could cool NW flow a little more than usual.

How the different teleconnections work together is complicated and many are at the cutting edge of climate long range forecasting and research.

The search for ENSO / winter correlation

Reanalysis of groups of strong El Niño years can be correlated with years exhibiting current atmospheric patterns from the list above and these show interesting results for UK winters illustrated below.  The following recent twitter chat is an example of such reanalysis widely undertaken by weather experts and enthusiasts:

// can then be rolled forward to see how things pan out through the winter. Here is an interesting example from consultant meteorologist Anthony Masiello.  He has reanalysed El Niño winters with years with November positive Arctic Oscillations (as now).


December enso: westerly influence, positive NAO


January enso: with Siberian snow cover: Atlantic blocking with -Ve AO and potential for Arctic incursions


February enso: Siberian snow cover years yield a beast from the east

The results above seem to match the idea of warmer unsettled Atlantic driven conditions before Christmas and colder blocked patterns after Christmas i.e. January and February have a decidedly blocked patterns to the north with low pressure to the south… as predicted in El Niño years as a possibility. HOWEVER.. if you check the number of years represented there are only 10 for El Niño years with +NAO and only 5 with widespread October Siberian snow cover. This is therefore not a significant finding, as Anthony himself points out on twitter.


Too much inter-event variability for headline news

Globally, there is great inter-event variability between different El Niño years. The charts above, from JMA, show composite impacts of El Niño events and their significance over several decades. These appear to show some warmer and wetter than average winter conditions in Europe which agrees with Cohen et al but is in contrast to other findings.  To complicate matters further there are also different types of El Niño such as Central Pacific (Modoki) events that are correlated with different impacts on global weather e.g. colder winters in USA.  The latest 2015-16 El Niño appears to be turning out as a “standard” East Pacific mega-El Niño event with a long continuous tongue of warm SST anomalies stretching across the east Pacific.  Even so, no two El Niño events are the same.


annual nonsense headlines from Daily Express about winter weather

One thing is for sure, recent newspaper reports touting confident headlines suggesting certainty over severe winter weather impacts in the UK and Europe “caused” by El Niño are not based on the findings of climate research or historic precedent which show only tentative and conflicting connections with our winter weather. It might be more accurate to suggest that no one really knows how El Niño  mixing with all the other connections will play out this winter!  Nevertheless, this should not stop the efforts of scientists trying to find clues for long range forecasts.

The last word should go to the UK MetOffice who state the following for the UK winter outlook with regard to El Niño 2015:

What does El Niño imply for the UK this winter?

Unlike some parts of the world, the effect of El Niño on Europe is relatively subtle. In El Niño years there is a tendency for early winter to be warmer and wetter than usual and late winter to be colder and drier. Despite this, it is just one of the factors that influence our winters, so other influences can overwhelm this signal – it is relatively straightforward, for example, to find years where these general trends were not followed.

El Niño moderately increases the probability of the positive phase of the North Atlantic Oscillation (NAO) in late autumn and early winter and the negative phase of the NAO in late winter. (In winter) the positive phase of the NAO is associated with milder- and wetter-than-average conditions, whilst the negative phase is associated with colder- and drier-than-average conditions.

useful references:

winter 2006 – 7

winter 2009-10

winter 2013